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The rheological properties of moderately concentrated emulsions are determined 
with allowance for surface tension. Cases of low and high surface tension at the 
phase boundary of the emulsion are analyzed. 

The rheological properties of emulsions have begun to be intensively studied in recent 
years. The effective viscosity of dilute emulsions is usually determined from the classical 
Taylor formula [i]. Different generalizations of this formula for concentrated systems are 
discussed in [2]. However, the Taylor model pertains only to the case when surface tension 

is large enough so as to prevent any change in the form of the drops. This condition may 
be violated in practice, which, as will be shown below, may lead not only to a change in ef- 
fective viscosity, but also to the creating of non-Newtonian properties in the emulsion. The 
authors of [3, 4] analyzed the effects which develop due to capillary phenomena on the surface 
of drops of emulsions in solutions of surfactants. In the present investigation, we study 
the effect of capillary phenomena due to comparability of capillary forces and viscous stres- 
ses in the dispersion medium on the effective viscosity of emulsions and the form of their 
rheological equation of state. 

The relationship between the deviatoric part of the hydrodynamic stress o and the tensor 
of the strain rates e is given in the form 

o = 2~e, ( 1 )  

where D is the effective viscosity of the emulsion. This quantity can be calculated from the 
relation [5] 

4 g  i r l=a  i r l=  a 

(summation is performed over repeating indices). 

Integration is performed in (2) over the surface of a certain sample drop. In determin- 
ing o+ and v+ on the surface of this drop, it is necessary to consider the presence of sur- 
rounding drops. The complexity of such a problem was noted in [3, 4, 6, 7]. In light of 
this, various schematizations of the hydrodynamic flow around an isolated drop have been 
used. In the case of limitingly dilute systems (p << i), the mutual effects of the drops 
are ignored and it is assumed that the sample drop in located in an infinite volume of the 
dispersion medium. It is further assumed that the velocity of the flow at an infinite 
distance from this drop coincides with the mean velocity of the emulsion in the region 
being examined. For mixtures with a moderate concentration of dispersed liquid particles 
(p ~ 0.2-0.25), we can use a scheme in which an isolated spherical drop is assumed to be 
immersed in a homogeneous hypothetical medium whose properties coincide with the properties 
of the effective medium as a whole [8]. In the present study, we perform our calculations 
by means of the latter scheme. 

If we assume that the equilibrium theory of surface tension is applicable to the pheno- 
menon we are examining, then the only effect of surface tension ~ will be discontinuity of 
the stress at the interface [9]. Thus, at each point on the surface of the sphere 
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where R z and R 2 are p r i n c i p a l  r a d i i  of  curvature  of  the i n t e r f a c e ;  p* and p+ are the pres- 
sures i ns ide  and outs ide  the Spher ica l  drop, r e s p e c t i v e l y .  

With al lowance fo r  (3 ) ,  the problem of determining the c h a r a c t e r i s t i c s  o f  the hydro- 
dynamic f i e l d  near the sample drop fo r  moderately concentrated emulsions can be formulated 
a s :  

- - V p * + h A v + = O ,  divv + = 0 ,  r ~ a ,  

--VP* + ~ A v *  = 0, divv* = 0, r ~ a ,  (4)  

* = v 2 ,  v? : --p* * v~ = W, + o~ = - - p +  § o7 + P~, 

o f  = ~ 7 ,  r = a ,  v*, p * < ~ ,  v~-- , -v ,  r ~ .  

The formulation of (4) differs from the well-known formulations in that no provision is 
made here for satisfaction of the condition v~ = v~ = 0 at r = a. 

In the state of pure shear, the velocity of the external flow can be given in the form 

v x = Ex, Vy = -Ey, v z = 0, E = const, i.e., the nontrivial components of the tensor E are 

exx = E, eyy = --E. 

We introduce a spherical coordinate system with its origin at the center of the drop. 

Then, analogous to [i0], the components of the mean velocity of the medium in pure shear are 
written in the form 

v~ = Er sin z 0 cos 2% Vo -= Er sin 0 cos e cos 2% % = -- Er sin 0 sin 2% (5) 

The general solution of the equation div v = 0, with an angular part that coincides with 
the angular part of (5), has the form 

3As A~ ) v r =  A l r - -  SA2r a @ ~ - b  3 - 7  sin 2ec0s2% 

r e = (  A ' r - 5 A ' r a -  " 2A-'--~a ) sin 0c~ oc~ 2% r '  

) " ~ - s inOs in2% v~ = -- ( A i r - -  5A2r 2Aa 
r~ 

( 6 )  

where A i (i = i, 2, 3, 4) are unknown coefficients subject to determination; r, 0, q) are 
spherical coordinates. Equations (6) are written in general form and are valid for an in- 
homogeneous medium. They do not apply to the effective medium. 

The radial components of (6) can be written separately for a spherical drop and for the 
region outside it. Considering the boundedness of v at r + 0 and r + ~ in accordance with 
conditions (4), in Eqs. (6) in the region inside the drop we need to ignore the terms contain- 
ing the coefficients A 3 and A 4. The terms with A 2 should be absent outside the drop in this 
case. Then 

= * = - v ~ ,  ( 7 )  v~* = Air --  3A~r ~, v$ Ai r - -  5A~r 3, v~ 

2Ba ~_ B~ , 2Ba 
w = F , r - ~  3 - -  v -~=r r  v+~=--vo +, 

T& r 2 ) r~ 

where B a and B 4 are the same coefficients A 8 and A 4. 

In accordance with (4), conditions of continuity of the quantities Ore , Or~, Vr, v0, ~, 
must be satisfied at the phase boundary. It can be shown that conditions of continuity of 

Or~, v,~ , as well as Ore , v e lead to the same equation at r = a. In accordance with (3), 
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the normal stress meanwhile undergoes a discontinuity connected with the presence of surface 
tension. The stresses Orr and Or0 inside and outside the particle are determined on the basis 
of expressions for the stress tensor in spherical coordinates [ii]. The surface pressure, 
figuring in (3), can be determined through the radial velocity of the fluid on the surface 
of the sphere in Fourier transforms. This can be done by means of the formula [ii] 

p {~__.~ ~ [2Vr_  ~ I O Z v ~ t l _ _  O ( s i n O O V ~ ) ]  , ( 8 )  
"~ i~o sin~O Oq~ z sin 0 O0 O0 

where im (i = J--l) in the Fourier transforms replaces the operator 8/3t. 

With allowance for (7), the conditions indicated above in (4) lead to a system of equa- 
tions relative to the unknown coefficients Az, A2, Ba, B~. We will also write these equa- 
tions in Fourier transforms: 

A 1 - -  3A~ + 3B3 - -  3B~ ----- E, A 1 - -  5A2 q- 2B~ : E, 

3 
AI~I 1 - -  8~hA2 - -  8B3N - -  3"qB~ - tiE, Al'q 1 -q- - - ~  'qIA2 q- 

(9) 

( ) ( ) atoJ aRo air 
E. 

In terms of significance, the integral (2) for the determination of N coincides with the 
integral obtained using the energy-based criterion of the equivalence of homogeneous and 
heterogeneous media [I0]. Here, the Eshelby formula [i0] leads to an expression which we 
can use to determine effective viscosity 

2 ~  0 -b 0 + 
3p  f S [__(YrrOr__(~rOO 0 

rl = ~o'+" 4naEZ b o 

o + + o  + o �9 
- -  %~v~ -t- ~ v , .  -q- cr~v ~ -q- (r,., v~] sm OdOd% 

(lO) 

where the variables having the superscript O pertain to the case of a homogeneous medium con- 
sisting entirely of the dispersion liquid with the viscosity Do: 

o Er sinZ0 cos 2% v~ ----- Er sin 0 cos 0 cos 2% 

o = 2~oE sin z 0 cos 2% v,~ = --  Er sin 0 sin 2% a~  

o o - -  2~oE sin 0 sin 2% ~o = 2TIoE sin 0 cos 0 cos 2% %~ = 

Having determined At, A 2, B 3, and B~ from system (9), we find the corresponding com- 
ponents of stress and velocity. Using these components in the integral (i0) leads to the 
following equation in the Fourier components to determine the effective viscosity of the 
emulsion: 

= Qo+ -- 
15 Q(1 - -  Qo) p[(1 - -  ~)(9,5 + 8ff~) ico -{- 
2 l ~ f ~  

q- 2A~ (2~ .-1- 5)l/[(4,5f~ -q- 3)(9,5 + 8~q) io) Jr  30A~ (1 --}- ~)], 

fl = ~l/lh, Qo = ~lo/~ll, AI -- 
O~ 

a~h 

In the absence of surface tension (~ = 0), the formula is simplified: 

15 (1 - -  Qo) ~Q 
f l =  f l o §  

2 3 -t- 4,5~Q 
9, 

(11) 

(le) 
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while at 5 << i, where 5 = u/A~ = maql/a , we find from (Ii) that 

~ : O o +  1 Q (1- -  Qo) (5 + 20) p/( I § Q). 
2 I--Q 

(z3) 

We can use (ii) to determine ~ with different values of ~ and p, while the limiting 
cases ~ >> i and 6 << 1 are studied by means of equations (12) and (13), respectively. 

In the case of dilute systems, we use a scheme in which the sample drop is assumed to be 
surrounded by liquid whose viscosity coincides with the viscosity of the dispersion medium 
q0 o Here, by repeating the above calculations we obtain a formula to determine the relative 
effective viscosity of the emulsion in the form 

[ (1--Q~176176 ] (14) 
= Q o  1 + 5 0  ( 3 9 0 + 2 ) ( 9 , 5 + 8 Q o ) i e + 2 0 A , ( 1 J r Q o )  . " 

From (14) for 6 >> 1 we have 

f~ = f~o [1 + 5 (1 - -  Co) W(3Qo + 2)], (15) 

which coincides in form with the formula in [2, i0] for the effective shear modulus of an 
elastic medium with spherical elastic inclusions if we take ~ and ~0 to mean the relative 
effective shear modulus ~/~z and the relative shear modulus ~0/Uz of the matrix, respective- 
ly. 

At ~ << i, it follows from (15) that 

Q =-~ I l + % (2-Qo-}-5} P,:[1 + Qo)] , (16) 

which coincides with the Taylor formula for the effective viscosity of emulsions. 

Considering (14) and (i) and using the inverse Fourier transform, we arrive at the fol- 
lowing rheological equation of state for the emulsion: 

i ] + 2  4 a ' a 

where 

(390 + 2) ('9.3 + 8_o_0) , ,%~== [390+24-5(l--Qo)pl(9,5-r-8Qo) 
20A,( l+O. o) 10Al [2( l+9_o)+(2Oo+5)p ] ' (18) 

r 

[/=-= %! ] +  - (200+5) o ' { !+Qo �9 
I L 
t 

It can be seen from (17) that when allowance is made for surface tension at the phase 
boundary of the emulsion, the rheological equation is of a relaxational character. For high- 
frequency nonsteady processes or small Al, i.e., at 6 >> i, relaxation (17) is replaced by the 
the relation o = 2Ne, where q is determined as 

h--:% [1 + 5p (1 --0-o)/!30o + 2)]. (19) 

In the case of low-frequency processes (5 << i), rheological equation (17) also changes 
into the standard steady-state rheological equation, with an effecive viscosity D, calcu- 
lated from (18). 
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The ranges of 6 for different systems depends on the characteristics of the liquid 
drop and the value of frequency ~. For example, for high-viscosity oils with DI = i0 Pa.sec 
and e = 25 mN/m, when the radius of a liquid drop e = 10 -4 m, we have 6 = 4.10 -3 m. It is 
evident from this that at ~ ~ 102 sec -I we can assume that 6 << i. In the region of frequen- 
cies of tens of kilohertz and higher, 6 >> I. 

In the more general case, we can examine situations in which one of the phases (or both 
phases) have viscoelastic properties. Such an analysis was performed in [12, 13] for certain 
types of emulsions and suspensions. Here, using the principle of elastic-viscoelastic ana- 
logy, we can immediately write expressions for effective viscosity. For example, let the 
disperse phase have viscoelastic properties. In the Fourier transforms in this case, we need 
to replace DI by ~l(l+~i(~)/ (i+87io) This quantity corresponds to the Oldroyd visco- 
elastic model [i], where e~ and g~ are the relaxation and retardation times, respectively. 
Then, in accordance with (14), we obtain an expression for the effective viscosity of the 
emulsion in Fourier transforms which is a rational fractional function relative to i~ (due 
to the limited scope of this article, the specific form of this expression is omitted here). 
Performing the inverse Fourier transformation with allowance for (i), we obtain a rheological 
equation of the form (17) which contains derivatives up to the third order with respect to 
time relative to o and e and, accordingly, new characteristic scales of time -- relaxation 
times. The appearance of higher derivatives is due to the relaxation times s~ and g~. When 
they vanish, the additional relaxation times also vanish, i.e., the rheological equation 
becomes (17). 

Using the principle of elasto-viscoelastic analogy, we can also proceed on the basis of 
(ii) to study mixtures with phases having more complex theological properties. Here, Do or 
Dl (or N0 and ~i) should be replaced by q0(i~) or Dl(i~). Then, using (ii), we can perform 
numerical calculations to establish the relation ~ = n(i~). In (I), changing over from the 
Fourier transforms to the originals, we obtain the rheological equation of the mixture. With 
approximation of the solution of (ii) ~ in the form of a polynomial relative to i~ or a 
ration of such polynomials, by changing over to the originals we obtain a linear relaxation 
equation of the form 

Po = 2~Qe, (20) 

where ~ is a certin coefficient which can be represented in the form (18), (19), etc. The 
quantities P and Q are differential operators of the form 

0 0 ~ 0 02 

Numerical calculations of the effective properties for moderately concentrated and di- 
lute emulsions were performed in accordance with Eqs. (ii) and (14). Figure i shows the 
change in the real part of ~ for two values of the parameter 6. At small 6, the difference 
in the change in Re ~ with respect to p for dilute and moderately concentrated systems is 
expressed more sharply compared to the case of large values of 6. In each case, Re ~ is 
larger for moderately concentrated systems than for dilute systems. In other words, large 
values of drop surface tension lead to an increase in the difference between the effective 
viscosities of dilute and concentrated emulsions. This difference is larger, the larger 
the concentration of drops of the emulsion P. 

Figure 2 shows the dependence of the real and imaginary parts of ~ for moderately con- 
centrated emulsions on In 6. It can be seen from the figure that an increase in 6 is ac- 
companied by a monotonic decrease in Re ~. The quantity Im ~ is characterized by convex 
dynamics. This is analogous to the result obtained previously for dilute emulsions: at small 
and large m, the relaxation process can be ignored. Intermediate values of 6 cause the rheo- 
logical model to be of a relaxational nature, i.e., the effect of Im ~ is substantial in this 
case. The character of the change in Re ~ and Im ~ with respect to 6 for dilute emulsions is 
generally similar to that for moderately concentrated emulsions. However, the values of Re 
and Im ~ for dilute emulsions are considerably smaller than the corresponding values for 
moderately concentrated systems. For dilute systems with small 6, the values of Re ~ coincide 
with the values of Re ~ determined from the Taylor formula. At large 6, they coincide with 
the values obtained from Eq. (15). For moderately concentrated systems, these limiting values 
are also greater than the corresponding limiting values of Re ~ for dilute systems. 
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Fig. i. Dependence of Re ~ on p for 
moderately concentrated (i) and di- 
lute (2) emulsions: 6 = 10 -2 (a); 102 
(b). 
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Fig. 2. Dependence of the real part 
(a) of ~ and the modulus of the imag- 
inary part of ~ (b) on In 6 in moder- 
ately concentrated emulsions at p = 
0.1 (i); O.2 (2); O.3 (3). 

NOTATION 

a, radius of spherical drop; e, strain-rate tensor; n, normal unit vector on the surface 
of the sphere; p, pressure; P~, surface pressure; r, position-vector; v, velocity vector; Vn, 
vt, normal and tangential components of velocity; v r, v 8, v~, coordinates of velocity in the 
spherical coordinate system; ~, surface tension at the phase boundary; 6 = waqz/~ , parameter; 

s ~ o~, relaxation times for stress and the velocity gradient of a viscoelastic drop; q0, qz 
viscosity of the dispersion medium and disperse phase of the emulsion, respectively; q, ef- 

fective viscosity of the emulsion; IF, 1~, %~, I~, relaxation times; 6, volume concentration 
of the disperse phase in the emulsion; o, stress tensor; an, ot, normal and tangential com- 
ponents of stress; w, Fourier transform parameter. The superscript * denotes the region in- 
side a sphere of radius a, while the superscript + denotes the region outside this sphere. 
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EXPERIMENTAL STUDY OF HEAT TRANSFER FROM THE WALLS OF A CHANNEL 

TO A CIRCULATING FLUIDIZED BED 

A. P. Baskakov, V. K. Maskaev, 
I. V. Ivanov, and A. G. Usol'tsev 

UDC 621.1:66.02 

Results are presented from an experimental study of external heat transfer in a 
circulating fluidized bed. 

Due to the intensive mixing of the dispersed material and the gas and the possibility 
of controlling their time of contact within a broad range of values, it has been found ex- 
pedient to use circulating fluidized beds in a number of chemical processes and operations 
involving drying and combustion. The broader use of such systems is being held up by a lack 
of reliable data on their aerodynamics and heat transfer characteristics. 

An experimental study of external heat transfer in a circulating bed was conducted on a 
unit at the S, M. Kirov Ural Polytechnic Institute [i]. The unit was closed with regard to 
the dispersed material and open with regard to the gas. The main component of the unit was 
a channel made of a steel tube with an inside diameter of 250 mm. The tube was composed of 
i0 sections placed on top of one another. The length of each section was 950 mm. Trans- 
parent windows for visual observation were located in each section. The lowest section of 
the channel had a gas-distributing grate with a through section of 10%. The grate func- 
tioned as an aerodynamic chamber in the given set-up. The finely dispersed material was 
quartz sand with a mean-mass particle diameter of 287 pm. The fractional composition of the 
sand is shown in Table i. 

The bulk and true densities of the sand were 1249 and 2640 kg/m 3. In amounts of up to 
12.1 tons/h (which corresponded to a change of up to 70 kg/(m2.sec) in the unit load of 
material per 1 m 2 of channel cross section), the solid phase was introduced into the unit 
with the use of a cantilever-type screw feeder with an inside diameter of 144 mm. The feeder 
was positioned 175 mm above the grate. The delivery of air into the feeder kept it from 
becoming obstructed in the case of high sand feeds. The bed was fluidized with air having 
a temperature of 30-60~ The air was directed through the grate with a filtration velocity 
w ranging from 5 to i0 m/sec (calculated on the basis of the empty cross section of the chan- 
nel). Here, the theoretical eddy velocity of the particles was 3.4 m/sec for particles 0.4 
mm in diameter and 6 m/sec for particles 0.8 mm in diameter. At the outlet of the channel, 
the disperse flow was separated in a two-stage dust separator consisting of cyclones and a 
bag filter. Passing through a system of hoppers and shut-off valves, the particles returned 
to the air chamber, while the air was released into the atmosphere. 
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